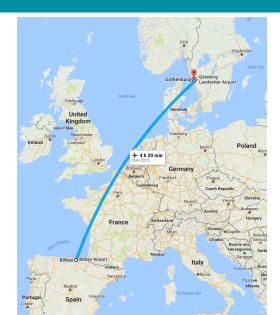


goi eskola Politeknikoa Faculty of Engineering

LEVERAGING MULTIVARIATE ANALYSIS TO DETECT ANOMALIES IN INDUSTRIAL CONTROL SYSTEMS DAT300 presentation

Mikel Iturbe

Electronics and Computing Department Faculty of Engineering – Mondragon University


Chalmers University of Technology, Gothenburg, Sweden September 15, 2016

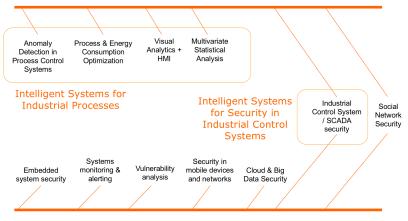
Introduction	ADSs	MSPC	Ongoing work	Conclusions
oo	0000000	000000000000000	o	

ABOUT ME

Introduction	ADSs	MSPC	Ongoing work	Conclusions
oo	0000000	000000000000000	o	

- Born in Bilbao, Basque Country, 1987
- BSc in Computer Engineering (Mondragon Unibertsitatea 2008-2012)
- MSc in ICT Security (UOC, UAB, URV 2012-2013)
- PhD in ICS Security (Mondragon Unibertsitatea 2013-2017?)

Introduction	ADSs	MSPC	Ongoing work	Conclusions
00	0000000	00000000000000	o	


About us: Mondragon Unibertsitatea

- $\cdot\,$ Small, private, non-profit university in the Basque Country
- Founded in 1997 (1943)
- Some data (14/15)
 - 4 faculties
 - 3513 undergrad students
 - 615 Master students
 - 112 PhD students
- Cooperative university
- Transfer oriented research

Introduction	ADSs	MSPC	Ongoing work	Conclusions
oo	0000000	000000000000000	o	

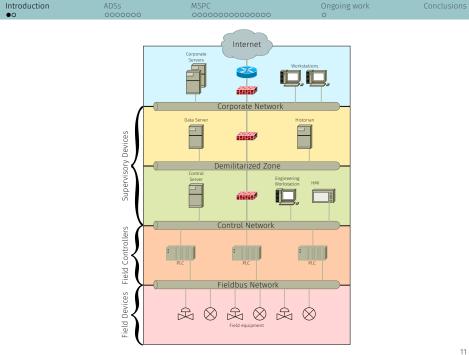
About us: Telematics team at Mondragon Unibertsitatea

Intelligent Systems

Information and Communications Security

Introduction	ADSs	MSPC	Ongoing work	Conclusions
oo	0000000	000000000000000	o	
Agenda				

- 1. Introduction
- 2. Anomaly Detection Systems
- 3. Multivariate Statistical Process Control
- 4. Ongoing work
- 5. Conclusions


Introduction

Introduction	ADSs 0000000	MSPC 000000000000000	Ongoing work o	Conclusions

INDUSTRIAL CONTROL SYSTEMS

CC-BY-SA 3.0 Kreuzschnabel, Schmimi1848, Wolkenkratzer, Brian Cantoni, Hermann Luyken, Beroesz

Introduction	ADSs	MSPC	Ongoing work	Conclusions
O	0000000	000000000000000	o	
ICS vs. IT				

	ICS networks	IT networks
Primary function	Control of physical equip- ment	Data processing and transfer
Applicable Domain	Manufacturing, processing and utility distribution	Corporate and home environ- ments
Hierarchy	Deep, functionally separated hierarchies with many proto- cols and physical standards	Shallow, integrated hierar- chies with uniform protocol and physical standard utili- sation
Failure Severity	High	Low
Reliability Required	High	Moderate
Round Trip Times	250µs-10 ms	50+ ms
Determinism	High	Low
Data Composition	Small packets of periodic and aperiodic traffic	Large, aperiodic packets
Temporal consistency	Required	Not Required
	Hostile conditions, often fea-	Clean environments, often
Operating environment	turing high levels of dust,	specifically intended for sen-
	heat and vibration	sitive equipment
System lifetime (years)	Some tens	Some
Average node complexity	low (simple devices, sensors, actuators)	high (large servers/file sys- tems/databases)

Anomaly Detection Systems

Introduction	ADSs	MSPC	Ongoing work	Conclusions
oo	•000000	000000000000000	o	

INTRUSION DETECTION SYSTEM

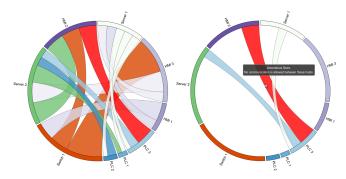
- Mechanisms that monitor network and/or system activities to detect suspicious events that occur in them.
- Main classification criteria in IDSs
 - 1. Detection mechanism
 - Signature-based
 - Anomaly Detection Systems (ADS)
 - 2. Scope
 - Host
 - Network
 - 3. ICS Scope
 - Network
 - Process

Introduction	ADSs	MSPC	Ongoing work	Conclusions
oo	oooooo	000000000000000	o	
ADSs on I	CSs			

- \cdot Active research topic
- Data-driven methods gaining traction

Bonnie Zhu and Shankar Sastry. SCADA-specific intrusion detection/prevention systems: a survey and taxonomy. In *Proceedings of the 1st Workshop on Secure Control Systems (SCS)*, 2010

Robert Mitchell and Ingray Chen. A Survey of Intrusion Detection Techniques for Cyber Physical Systems. *ACM Computing Surveys*, 46(4), April 2014


Introduction	ADSs	MSPC	Ongoing work	Conclusions
oo	oo●oooo	00000000000000	o	

GAPS IN LITERATURE

- \cdot We found a couple of relevant gaps in the literature.
 - 1. Lack of visualizations
 - 2. Almost no network & process level ADSs

Introduction	ADSs	MSPC	Ongoing work	Conclusions
oo	0000000	000000000000000	o	

VISUAL NETWORK FLOW MONITORING

(a) Forbidden flow between (b) Detail of the forbidden PLC 1 and HMI 2. flow.

Mikel Iturbe, Iñaki Garitano, Urko Zurutuza, and Roberto Uribeetxeberria. Visualizing Network Flows and Related Anomalies in Industrial Networks using Chord Diagrams and Whitelisting. In *Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications*, volume 2, pages 99–106, Feb. 2016

Introduction	ADSs	MSPC	Ongoing work	Conclusions
oo	0000●00	000000000000000	o	

VISUAL NETWORK FLOW MONITORING

Able to detect, based on whitelisting:

- Forbidden connection
- Forbidden port
- Incorrect flow size (DoS)
- Missing host

Introduction	ADSs	MSPC	Ongoing work	Conclusions
00	00000●0	00000000000000	o	

GAPS IN LITERATURE

- \cdot We found a couple of relevant gaps in the literature.
 - 1. Lack of visualizations
 - 2. Almost no network & process level ADSs

Introduction	ADSs	MSPC	Ongoing work	Conclusions
oo	000000	000000000000000	o	
GADS IN LT	TEDATIIDE			

"In order to make IDSs effective in protecting this kind of systems, it is then needed a set of multilayer aggregation features to correlate events generated from different sources (e.g. correlating events coming from the process network of a remote transmission substation with events coming from the office network of a control center) in order to detect large scale complex attacks. This probably represents the next research challenge in this field."

Ettore Bompard, Paolo Cuccia, Marcelo Masera, and Igor Nai Fovino. Cyber vulnerability in power systems operation and control. In *Critical Infrastructure Protection*, pages 197–234. Springer, 2012

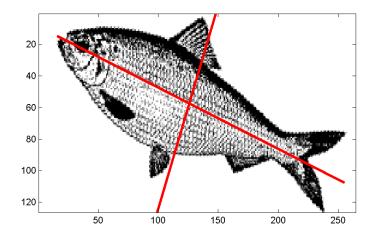
Multivariate Statistical Process Control

Introduction	ADSs	MSPC	Ongoing work	Conclusions
00	0000000	● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	o	

Multivariate data

	V_1	V ₂	V ₃	 Vm
01				
0 ₂ 0 ₃				
03				
•				
:				
•				
On				

• ICSs are multivariate by nature.

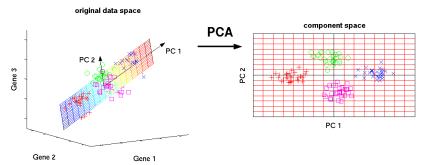

Introduction	ADSs	MSPC	Ongoing work	Conclusions
00	0000000	⊙●○○○○○○○○○○○○○	o	
Μιμτιλαρια				

It is not easy to monitor...

- If variables are in their normal operation constraints
- Correlations between different variables

But, information can be expressed in a (smaller) set of non-measurable variables called Latent Variables or Principal Components

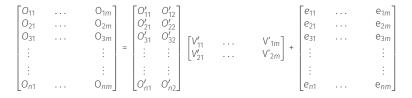
Introduction	ADSs	MSPC	Ongoing work	Conclusions
oo	0000000	○○●○○○○○○○○○○○○	o	
Principal (Component A	Analysis (PCA)		



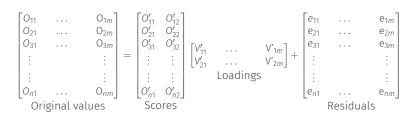
CC-BY-SA 2.5 Charles Albert-Lehalle

Introduction	ADSs	MSPC	Ongoing work	Conclusions
oo	0000000	000000000000000000000000000000000000	O	
Principal	Component <i>i</i>	Analysis (PCA)		

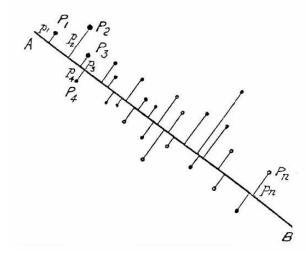
- Dimensionality Reduction Algorithm
- \cdot Linear combination of variables
- Maximizes variance



CC-BY 2.0 Matthias Scholz, Approaches to analyse and interpret biological profile data. PhD Thesis. University of Potsdam, 2006


PRINCIPAL COMPONENT ANALYSIS (PCA)

$$X = T_A P_A^t + E_A$$

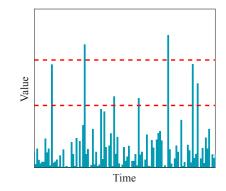


PRINCIPAL COMPONENT ANALYSIS (PCA)

$$X = T_A P_A^t + E_A$$

Introduction	ADSs	MSPC	Ongoing work	Conclusions
00	0000000	000000000000000	o	
PCA: RESID	UALS			

PD - Pearson, K. 1901. On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2:559-572.

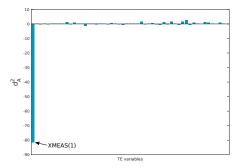

Introduction	ADSs	MSPC	Ongoing work	Conclusions
oo	0000000	○○○○○○○●○○○○○○	o	

MULTIVARIATE STATISTICAL PROCESS CONTROL

- <u>Statistical</u> Control
- Process-agnostic
- We monitor the scores and the residuals on control charts.
- Two univariate statistics:

$$D_n = \sum_{a=1}^{A} \left(\frac{t_{an} - \mu_{t_a}}{\sigma_{t_a}} \right)^2; \ Q_n = \sum_{a=1}^{A} (e_{nm})^2$$

Introduction	ADSs	MSPC	Ongoing work	Conclusions
oo	0000000	0000000000000000	o	
Control C	HARTS			


Introduction	ADSs	MSPC	Ongoing work	Conclusions
00	0000000	000000000000000000000000000000000000	o	

ANOMALY DETECTION

- \cdot Monitoring of control charts
- If three consecutive observations go of bounds, the event is flagged as anomalous

Introduction	ADSs	MSPC	Ongoing work	Conclusions
00	0000000	00000000000000000	o	
Ανομαιή Γ)IAGNOSIS			

- Once an anomaly is flagged, we diagnose its cause
 - Contribution (oMEDA) plots

José Camacho. Observation-based missing data methods for exploratory data analysis to unveil the connection between observations and variables in latent subspace models. *Journal of Chemometrics*, 25(11):592–600, 2011

Introduction	ADSs	MSPC	Ongoing work	Conclusions
oo	0000000	○○○○○○○○○○○○○	o	

Application to Network Anomaly Detection

- MSPC-based techniques can be used for network anomaly detection.
- Variable parametrization.
 - Logs

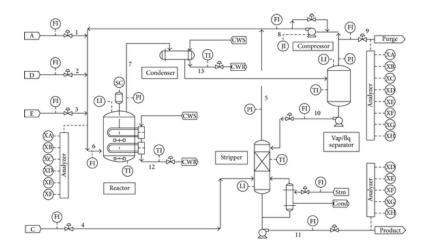
José Camacho, Gabriel Maciá Fernández, Jesús Díaz Verdejo, and Pedro García Teodoro. Tackling the Big Data 4 vs for anomaly detection. In *Computer Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on*, pages 500–505, April 2014. doi: 10.1109/INFCOMW.2014.6849282

José Camacho, Alejandro Pérez Villegas, Pedro García Teodoro, and Gabriel Maciá Fernández. PCA-based multivariate statistical network monitoring for anomaly detection. *Computers & Security*, 59:118–137, 2016. ISSN 0167-4048. doi: http://dx.doi.org/10.1016/j.cose.2016.02.008

Introduction	ADSs	MSPC	Ongoing work	Conclusions
00	0000000	○○○○○○○○○○○○○○	o	
And in ICSs	?			

• When looking at Process Data, we might be able to distinguish intrusions from disturbances using MSPC

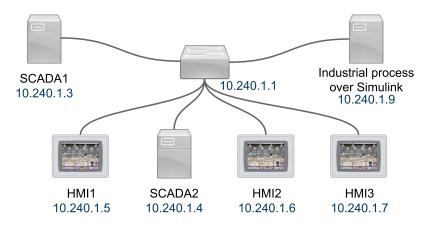
Mikel Iturbe, José Camacho, Iñaki Garitano, Urko Zurutuza, and Roberto Uribeetxeberria. On the feasibility of distinguishing between process disturbances and intrusions in process control systems using multivariate statistical process control. In 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN 2016), 2016


Introduction	ADSs	MSPC	Ongoing work	Conclusions
oo	0000000	○○○○○○○○○○○○○○	o	
MORK HVD	οτμεςις			

Therefore, it seems natural to link both worlds, and create a unified ADS for ICSs.

Ongoing work

	Introduction oo	ADSs 0000000	MSPC 000000000000000	Ongoing work o	Conclusions
--	--------------------	-----------------	-------------------------	-------------------	-------------


PROCESS: TENNESSEE-EASTMAN

James J Downs and Ernest F Vogel. A plant-wide industrial process control problem. Computers & Chemical Engineering, 17(3):245–255, 1993

Introduction	ADSs	MSPC	Ongoing work	Conclusions
oo	0000000	00000000000000	O	

NETWORK

Introduction	ADSs	MSPC	Ongoing work	Conclusions
oo	0000000	000000000000000	•	

- Timestamp synchronization
- Data processing complexity

Conclusions

Introduction	ADSs	MSPC	Ongoing work	Conclusions
oo	0000000	000000000000000	o	
CONCUERO	NC			

- Anomaly Detection in ICSs is an active research field
- Security visualizations in the field are still in their infancy
- Multivariate Analysis can help finding process-level anomalies
- Network variable parametrization opens the way to a multi-level, process-agnostic, ADS for ICSs.

THANK YOU.

miturbe@mondragon.edu iturbe.info

